Tính chất của hệ phương trình tuyến tính thuần nhất

Tính chất của hệ phương trình tuyến tính thuần nhất

Tính chất của hệ phương trình tuyến tính thuần nhất

Tính chất của hệ phương trình tuyến tính thuần nhất


Hệ phương trình tuуến tính thuần nhất có dạng $\left\{ \begin{gathered} {a_{11}}{х_1} + {a_{12}}{х_2} + ... + {a_{1n}}{х_1} = 0 \hfill \\ {a_{12}}{х_1} + {a_{22}}{х_2} + ... + {a_{2n}}{х_n} = 0 \hfill \\ ... \hfill \\ {a_{m1}}{х_1} + {a_{m2}}{х_2} + ... + {a_{mn}}{х_n} = 0 \hfill \\ \end{gathered} \right..$

Với $A = \left( {\begin{arraу}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{...}&{{a_{1n}}} \\ {{a_{21}}}&{{a_{22}}}&{...}&{{a_{2n}}} \\ {...}&{...}&{...}&{...} \\ {{a_{m1}}}&{{a_{m2}}}&{...}&{{a_{mn}}} \end{arraу}} \right),X = \left( {\begin{arraу}{*{20}{c}} {{х_1}} \\ {{х_2}} \\ {...} \\ {{х_n}} \end{arraу}} \right),O = \left( {\begin{arraу}{*{20}{c}} 0 \\ 0 \\ {...} \\ 0 \end{arraу}} \right).$

Hệ phương trình đã cho có thể được ᴠiết dưới dạng ma trận $AX=O.$

Hệ phương trình đã cho có thể được ᴠiết dưới dạng ᴠéctơ ${{х}_{1}}A_{1}^{c}+{{х}_{2}}A_{2}^{c}+...+{{х}_{n}}A_{n}^{c}=O.$

Hạng của ma trận hệ ѕố ᴠà hạng của ma trận hệ ѕố mở rộng của hệ thuần nhất bằng nhau do đó nó luôn có nghiệm. Hệ phương trình tuуến tính thuần nhất luôn có nghiệm ${{х}_{1}}={{х}_{2}}=...={{х}_{n}}=0,$ nghiệm nàу được gọi là nghiệm tầm thường của hệ phương trình tuуến tính thuần nhất.

Bạn đang хem: Cách giải hệ phương trình tuуến tính thuần nhất

Tính chất của hệ phương trình tuyến tính thuần nhất
Tính chất của hệ phương trình tuyến tính thuần nhất
Tính chất của hệ phương trình tuyến tính thuần nhất

1 – Hệ phương trình tuyến tính thuần nhất

Hệ phương trình tuyến tính thuần nhất có dạng $left{ egin{gathered} {a_{11}}{x_1} + {a_{12}}{x_2} + … + {a_{1n}}{x_1} = 0 hfill \ {a_{12}}{x_1} + {a_{22}}{x_2} + … + {a_{2n}}{x_n} = 0 hfill \ … hfill \ {a_{m1}}{x_1} + {a_{m2}}{x_2} + … + {a_{mn}}{x_n} = 0 hfill \ end{gathered}
ight..$

Với $A = left( {egin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{…}&{{a_{1n}}} \ {{a_{21}}}&{{a_{22}}}&{…}&{{a_{2n}}} \ {…}&{…}&{…}&{…} \ {{a_{m1}}}&{{a_{m2}}}&{…}&{{a_{mn}}} end{array}} ight),X = left( {egin{array}{*{20}{c}} {{x_1}} \ {{x_2}} \ {…} \ {{x_n}} end{array}} ight),O = left( {egin{array}{*{20}{c}} 0 \ 0 \ {…} \ 0 end{array}}

ight).$

Hệ phương trình đã cho có thể được viết dưới dạng ma trận $AX=O.$

Hệ phương trình đã cho có thể được viết dưới dạng véctơ ${{x}_{1}}A_{1}^{c}+{{x}_{2}}A_{2}^{c}+…+{{x}_{n}}A_{n}^{c}=O.$

Hạng của ma trận hệ số và hạng của ma trận hệ số mở rộng của hệ thuần nhất bằng nhau do đó nó luôn có nghiệm. Hệ phương trình tuyến tính thuần nhất luôn có nghiệm ${{x}_{1}}={{x}_{2}}=…={{x}_{n}}=0,$ nghiệm này được gọi là nghiệm tầm thường của hệ phương trình tuyến tính thuần nhất.

Đang xem: Phương trình thuần nhất là gì

2 – Điều kiện cần và đủ để hệ phương trình thuần nhất có nghiệm không tầm thường (vô số nghiệm)

Hệ phương trình thuần nhất n ẩn số có nghiệm không tầm thường khi và chỉ khi hạng của ma trận hệ số nhỏ hơn số ẩn.

Hệ quả 1: Hệ phương trình thuần nhất có số phương trình nhỏ hơn số ẩn luôn có nghiệm không tầm thường (vô số nghiệm)

Hệ quả 2: Hệ phương trình thuần nhất có số phương trình bằng số ẩn có nghiệm không tầm thường khi và chỉ khi định thức của ma trận hệ số bằng 0.

Xem thêm: Cách Viết Mở Bài Chung Cho Nghị Luận Văn Học Lớp 12 Hay Nhất

Hệ quả 3: Hệ phương trình thuần nhất có số phương trình bằng số ẩn chỉ có nghiệm tầm thường (nghiệm duy nhất) khi và chỉ khi định thức của ma trận hệ số khác 0.

3 – Cấu trúc tập hợp nghiệm của hệ phương trình tuyến tính thuần nhất

Tập $ker (A) = left{ {X = left( {egin{array}{*{20}{c}} {{x_1}} \ {{x_2}} \ {…} \ {{x_n}} end{array}} ight) in {mathbb{R}^n}|AX = O}

ight}$ là một không gian con của không gian véctơ ${{mathbb{R}}^{n}}$ và được gọi là tập hợp tất cả các nghiệm của hệ thuần nhất $AX=O$ hay không gian nghiệm của hệ thuần nhất.

Xem thêm: Diện Tích Vsip Nghệ An : Mang Tầm Quốc Tế, Khu Công Nghiệp Vsip

Mỗi cơ sở của $ker (A)$ được gọi là một hệ nghiệm cơ bản của hệ thuần nhất.

Số chiều của không gian nghiệm của hệ thuần nhất $dimleft( ker (A)
ight)=n-r(A).$

Vậy $r(A)=r>>Hệ phương trình tuyến tính tổng quát và Khảo sát tổng quát hệ phương trình tuyến tính

Đề và đáp án chi tiết của đề thi chọn học sinh giỏi tỉnh môn Toán lớp 12 năm học 2020 – 2021 bảng A tỉnh Nghệ An bạn đọc tải về tạiđây

Xem thêm bài viết thuộc chuyên mục: Phương trình

Trong toán học (cụ thể là trong đại số tuyến tính), một hệ phương trình đại số tuyến tính hay đơn giản là hệ phương trình tuyến tính là một tập hợp các phương trình tuyến tính với cùng những biến số. Ví dụ:

Một phương pháp giải cho hệ trên là phương pháp thế. Trước hết, biến đổi phương trình đầu tiên để được phương trình tính ẩn theo :

Sau đó thế hệ thức này vào phương trình dưới:

Ta được một phương trình bật nhất theo . Giải ra, ta được , và tính lại được .

Hình thức tổng quátSửa đổi

Hệ phương trình trên có thể được viết theo dạng phương trình ma trận:

Ax=b

Với A là ma trận chứa các hệ số ai, j (ai, j là phần tử ở hàng thứ i, cột thứ j của A); x là vector chứa các biến xj; b là vector chứa các hằng số bi. Tức là:

Nếu các biến số của hệ phương trình tuyến tính nằm trong các trường đại số vô hạn (ví dụ số thực hay số phức), thì chỉ có ba trường hợp xảy ra:

  • hệ không có nghiệm (vô nghiệm)
  • hệ có duy nhất một nghiệm
  • hệ có vô số nghiệm

Hệ phương trình tuyến tính có thể thấy trong nhiều ứng dụng trong khoa học.

Điều kiện có nghiệm trong trường hợp tổng quátSửa đổi

Trong trường hợp tổng quát, ta xét các ma trận hệ số A và ma trận hệ số bổ sung thêm cột các số hạng ở vế phải A' .

;

Khi đó hệ có nghiệm khi và chỉ khi hạng của hai ma trận này bằng nhau.

.

Chi tiết hơn ta có:

  1. Nếu thì hệ vô nghiệm
  2. Nếu hệ có nghiệm và
    1. Nếu hệ có nghiệm duy nhất
    2. Nếu hệ có vô số nghiệm phụ thuộc vào k-r ẩn tự do.

(không xảy ra trường hợp hay )

  • Ví dụ:
    • Hệ
có nghiệm duy nhất ;
    • Hệ
có vô số nghiệm phụ thuộc một ẩn tự do z:
    • Hệ
vô nghiệm.

Các trường hợp đặc biệtSửa đổi

  • Nếu k bằng n, và ma trận A là khả nghịch (hay định thức của ma trận A khác không) thì hệ có nghiệm duy nhất:
x = A−1 b với A−1 là ma trận nghịch đảo của A.
  • Nếu b=0 (mọi bi bằng 0), hệ được gọi là hệ thuần nhất. Tập tất cả các nghiệm của một hệ phương trình thuần nhất lập thành một không gian vecter con của , nó được gọi là hạt nhân của ma trận A, viết là Ker(A).(Cũng là hạt nhân của phép biến đổi tuyến tính xác định bởi ma trận A). Nếu hệ phương trình tuyến tính thuần nhất có k=n và ma trận A khả nghịch thì nó có nghiệm duy nhất là nghiệm không.

Các phương pháp giảiSửa đổi

Dưới đây liệt kê vài phương pháp tìm nghiệm của hệ phương trình tuyến tính:

  • Phép khử Gauss
  • Phép phân rã Cholesky
  • Phép đệ quy Levinson
  • Phép đệ quy Schur
  • Phép phân rã giá trị dị thường

Xem thêmSửa đổi

  • Phương trình tuyến tính
  • Hệ phương trình
  • Phương trình ma trận
  • Ma trận nghịch đảo

Tham khảoSửa đổi

Liên kết ngoàiSửa đổi

  • (tiếng Anh) Simultaneous Linear Equations Solver
Các chủ đề chính trong toán học
Nền tảng toán học | Đại số | Giải tích | Hình học | Lý thuyết số | Toán học rời rạc | Toán học ứng dụng |
Toán học giải trí | Toán học tô pô | Xác suất thống kê