Video hướng dẫn giải - bài 5 trang 92 sgk đại số và giải tích 11

\(\begin{array}{l}\sin n + \cos n \\= \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \left( {\sin n\cos \frac{\pi }{4} + \cos n\sin \frac{\pi }{4}} \right)\\= \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\\\text {Vì } - 1 \le \sin \left( {n + \frac{\pi }{4}} \right) \le 1\\\Rightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right) \le \sqrt 2 \\\Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}\end{array}\)

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • LG b
  • LG c
  • LG d

Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

LG a

\(u_n= 2n^2-1\)

Phương pháp giải:

Dãy số \(\left( {{u_n}} \right)\) được gọi làbị chặn trênnếu tồn tại một sốMsao cho \({u_n} \le M\,\,\forall n \in N^*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi làbị chặn dưới nếu tồn tại một sốmsao cho \({u_n} \ge m\,\,\forall n \in N^*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi làbị chặnnếu nó vừa bị chặn trên vừa bị chặn dưới, tức làtồn tại các sốm,Msao cho \(m \le {u_n} \le M\,\,\forall n \in N^*\).

Lời giải chi tiết:

Ta có:

\(n \ge 1 \Rightarrow {n^2} \ge 1 \Rightarrow 2{n^2} \ge 2 \)

\(\Rightarrow 2{n^2} - 1 \ge 1 \Rightarrow {u_n} \ge 1,\forall n \in {N^*}\)

Do đó \((u_n)\) bị chặn dưới bởi 1.

Ngoài ra,\((u_n)\) không bị chặn trên vì không tồn tại số M nào để \(2n^2-1 < M\) với mọi \(n\in N^*\).

LG b

\( u_n=\dfrac{1}{n(n+2)}\)

Lời giải chi tiết:

Dễ thấy \(u_n> 0 \,\, \forall n \in N^*\).
Mặt khác, vì:

\(\begin{array}{l}
\left\{ \begin{array}{l}
n \ge 1 \Rightarrow {n^2} \ge 1\\
2n \ge 2
\end{array} \right.\\ \Rightarrow n\left( {n + 2} \right) = {n^2} + 2n \ge 1 + 2 = 3\\
\Rightarrow \dfrac{1}{{n\left( {n + 2} \right)}} \le \dfrac{1}{3} \Rightarrow {u_n} \le \dfrac{1}{3}\,\,\forall n \in N^*.
\end{array}\)

Suy ra\(0 < u_n\) \(\leq \dfrac{1}{3}\)với mọi\(n \in {\mathbb N}^*\).

Vậy dãy số bị chặn.

LG c

\(u_n= \dfrac{1}{2n^{2}-1}\)

Lời giải chi tiết:

Dễ thấy\(u_n= \dfrac{1}{2n^{2}-1} > 0\) với mọi \(n\in N^*\)
Ta có:

\(\begin{array}{l}
{n^2} \ge 1 \Leftrightarrow 2{n^2} \ge 2 \Leftrightarrow 2{n^2} - 1 \ge 1 > 0\\
\Rightarrow 0 < \dfrac{1}{{2{n^2} - 1}} \le 1\,\,\,\forall n \in N^*
\end{array}\)

Vậy \(0 < u_n 1 \,\, \forall n \in N^*\), tức dãy số bị chặn.

LG d

\(u_n= \sin n + \cos n\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\sin n + \cos n \\= \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \left( {\sin n\cos \frac{\pi }{4} + \cos n\sin \frac{\pi }{4}} \right)\\= \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\\
\text {Vì } - 1 \le \sin \left( {n + \frac{\pi }{4}} \right) \le 1\\\Rightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right) \le \sqrt 2 \\\Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}
\end{array}\)

Vậy \(-\sqrt 2 \le u_n \le \sqrt 2 \,\, \forall n \in {\mathbb N}^*\), tức là dãy số là dãy bị chặn.