How many words can be formed combination so that the vowels always come together?

Permutation is known as the process of organizing the group, body, or numbers in order, selecting the body or numbers from the set, is known as combinations in such a way that the order of the number does not matter.

In mathematics, permutation is also known as the process of organizing a group in which all the members of a group are arranged into some sequence or order. The process of permuting is known as the repositioning of its components if the group is already arranged. Permutations take place, in almost every area of mathematics. They mostly appear when different commands on certain limited sets are considered.

Permutation Formula

In permutation r things are picked from a group of n things without any replacement. In this order of picking matter.

nPr = (n!)/(n – r)!

Here,

n = group size, the total number of things in the group

r = subset size, the number of things to be selected from the group

Combination

A combination is a function of selecting the number from a set, such that (not like permutation) the order of choice doesn’t matter. In smaller cases, it is conceivable to count the number of combinations. The combination is known as the merging of n things taken k at a time without repetition. In combination, the order doesn’t matter you can select the items in any order. To those combinations in which re-occurrence is allowed, the terms k-selection or k-combination with replication are frequently used.

Combination Formula

In combination r things are picked from a set of n things and where the order of picking does not matter.

nCr = n!⁄((n-r)! r!)

Here,

n = Number of items in set

r = Number of things picked from the group

In how many ways can the letters of the word IMPOSSIBLE be arranged so that all the vowels come together?

Solution:

Vowels are: I,I,O,E

If all the vowels must come together then treat all the vowels as one super letter, next note the letter ‘S’ repeats so we’d use

7!/2! = 2520 

Now count the ways the vowels in the super letter can be arranged, since there are 4 and 1 2-letter(I’i) repeat the super letter of vowels would be arranged in 12 ways i.e., (4!/2!)

= (7!/2! × 4!/2!) 

= 2520(12)

= 30240 ways

Similar Questions

Question 1: In how many ways can the letters be arranged so that all the vowels came together word is CORPORATION?

Solution:

Vowels are :- O,O,A,I,O

If all the vowels must come together then treat all the vowels as one super letter, next note the R’r letter repeat so we’d use

7!/2! = 2520

Now count the ways the vowels in the super letter can be arranged, since there are 5 and 1 3-letter repeat the super letter of vowels would be arranged in 20 ways i.e., (5!/3!)

= (7!/2! × 5!/3!)

= 2520(20)

= 50400 ways

Question 2: In how many different ways can the letters of the word ‘MATHEMATICS’ be arranged such that the vowels must always come together?

Solution:

Vowels are :- A,A,E,I

Next, treat the block of vowels like a single letter, let’s just say V for vowel. So then we have MTHMTCSV – 8 letters, but 2 M’s and 2 T’s. So there are

8!/2!2! = 10,080

Now count the ways the vowels letter can be arranged, since there are 4 and 1 2-letter repeat the super letter of vowels would be arranged in 12 ways i.e., (4!/2!)

= (8!/2!2! × 4!/2!)

= 10,080(12)

= 120,960 ways

Question 3: In How many ways the letters of the word RAINBOW be arranged in which vowels are never together?

Solution:

Vowels are :- A, I, O  

Consonants are:- R, N, B, W.

Arrange all the vowels in between the consonants so that they can not be together. There are 5 total places between the consonants. So, vowels can be organize in 5P3 ways and the four consonants can be organize in 4! ways.

Therefore, the total arrangements are 5P3 * 4! = 60 * 24 = 1440

Answer

Verified

Hint: The word daughter has $8$ letters in which $3$ are vowels. For the vowels to always come together consider all the $3$ vowels to be one letter (suppose V) then total letters become $6$ which can be arranged in $6!$ ways and the vowels themselves in $3!$ ways.Complete step-by-step answer:
Given word ‘DAUGHTER’ has $8$ letters in which $3$ are vowels and 5 are consonants. A, U, E are vowels and D, G, H, T, R are consonants.
(i)We have to find the total number of words formed when the vowels always come together.
Consider the three vowels A, U, E to be one letter V then total letters are D, G, H, T, R and V. So the number of letters becomes $6$
So we can arrange these $6$ letters in $6!$ ways. Since the letter V consists of three vowels, the vowels themselves can interchange with themselves. So the number of ways the $3$vowels can be arranged is $3!$
Then,
$ \Rightarrow $ The total number of words formed will be=number of ways the $6$ letters can be arranged ×number of ways the $3$ vowels can be arranged
On putting the given values we get,
$ \Rightarrow $ The total number of words formed=$6! \times 3!$
We know $n! = n \times \left( {n - 1} \right)! \times ...3,2,1$
$ \Rightarrow $ The total number of words formed=$6 \times 4 \times 5 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1$
On multiplying all the numbers we get,
 $ \Rightarrow $ The total number of words formed=$24 \times 5 \times 6 \times 6$
$ \Rightarrow $ The total number of words formed=$120 \times 36$
$ \Rightarrow $ The total number of words formed=$4320$
The number of words formed from ‘DAUGHTER’ such that all vowels are together is $4320$.

(ii)We have to find the number of words formed when no vowels are together.
Consider the following arrangement- _D_H_G_T_R
The spaces before the consonants are for the vowels so that no vowels come together. Since there are $5$ consonants so they can be arranged in $5!$ ways.
There are $6$ spaces given for $3$ vowels. We know to select r things out of n things we write use the following formula-${}^{\text{n}}{{\text{C}}_{\text{r}}}$=$\dfrac{{n!}}{{r!n - r!}}$
So to select $3$ spaces of out $6$ spaces =${}^6{{\text{C}}_3}$
And the three vowels can be arranged in these three spaces in $3!$ ways.
$ \Rightarrow $ The total number of words formed=${}^6{{\text{C}}_3} \times 3! \times 5!$
$ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!6 - 3!}} \times 5! \times 3!$
$ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!}} \times 5!$
On simplifying we get-
$ \Rightarrow $ The total number of words formed=$\dfrac{{6 \times 5 \times 4 \times 3!}}{{3!}} \times 5!$
$ \Rightarrow $ The total number of words formed=$120 \times 5 \times 4 \times 3 \times 2 \times 1$
On multiplying we get,
$ \Rightarrow $ The total number of words formed=$14400$
The total number of words formed from ‘DAUGHTER’ such that no vowels are together is $14400$.

Note: Combination is used when things are to be arranged but not necessarily in order. Permutation is a little different. In permutation, order is important. Permutation is given by-
$ \Rightarrow {}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ Where n=total number of things and r=no. of things to be selected.

How many ways a word can be arranged vowels come together?

The number of ways the word TRAINER can be arranged so that the vowels always come together are 360.

How many arrangements are there if all the vowels are together?

Mathematic can be arranged in 453,600 different ways if it is ten letters and only use each letter once. Assuming all vowels will be together 15,120 arrangements.

Can 2 vowels come together?

Since no two vowels can come together, therefore vowels can be inserted in any three places out of the five places available, such as, i.e.,in 5C3 ways, i.e., 10 ways required =24×6×10=1440.

How many ways judge can be arranged vowels always come together?

= 48. Q. In how many different ways can the letters of the word 'DRASTIC' be arranged in such a way that the vowels always come together?