The specific relationship between a legume and its mutualistic Rhizobium strain probably depends on

1. Ibáñez F., Wall L., Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: Intercellular invasion of the roots. J. Exp. Bot. 2017;68:1905–1918. doi: 10.1093/jxb/erw387. [PubMed] [CrossRef] [Google Scholar]

2. Peters K.N., Verma D.P. Phenolic compounds as regulators of gene expression in plant-microbe relations. Mol. Plant Microbe Interact. 1990;3:4–8. doi: 10.1094/MPMI-3-004. [PubMed] [CrossRef] [Google Scholar]

3. D’Haeze W., Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology. 2002;12:79R–105R. doi: 10.1093/glycob/12.6.79R. [PubMed] [CrossRef] [Google Scholar]

4. Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004;68:280–300. doi: 10.1128/MMBR.68.2.280-300.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Den Herder J., Vanhee C., De Rycke R., Corich V., Holsters M., Goormachtig S. Nod factor perception during infection thread growth fine-tunes nodulation. Mol. Plant Microbe Interact. 2007;20:129–137. doi: 10.1094/MPMI-20-2-0129. [PubMed] [CrossRef] [Google Scholar]

6. Heckmann A.B., Lombardo F., Miwa H., Perry J.A., Bunnewell S., Parniske M., Wang T.L., Downie J.A. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 2006;142:1739–1750. doi: 10.1104/pp.106.089508. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Limpens E., Mirabella R., Fedorova E., Franken C., Franssen H., Bisseling T., Geurts R. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl. Acad. Sci. USA. 2005;102:10375–10380. doi: 10.1073/pnas.0504284102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Capoen W., Goormachtig S., De Rycke R., Schroeyers K., Holsters M. SrSYMRK, a plant receptor essential for symbiosome formation. Proc. Natl. Acad. Sci. USA. 2005;102:10369–10374. doi: 10.1073/pnas.0504250102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Parniske M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008;6:763–775. doi: 10.1038/nrmicro1987. [PubMed] [CrossRef] [Google Scholar]

10. Amor B.B., Shaw S.L., Oldroyd G.E., Maillet F., Penmetsa R.V., Cook D., Long S.R., Denarie J., Gough C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 2003;34:495–506. doi: 10.1046/j.1365-313X.2003.01743.x. [PubMed] [CrossRef] [Google Scholar]

11. Radutoiu S., Madsen L.H., Madsen E.B., Felle H.H., Umehara Y., Gronlund M., Sato S., Nakamura Y., Tabata S., Sandal N., et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. 2003;425:585–592. doi: 10.1038/nature02039. [PubMed] [CrossRef] [Google Scholar]

12. Madsen E.B., Madsen L.H., Radutoiu S., Olbryt M., Rakwalska M., Szczyglowski K., Sato S., Kaneko T., Tabata S., Sandal N., et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 2003;425:637–640. doi: 10.1038/nature02045. [PubMed] [CrossRef] [Google Scholar]

13. Arrighi J.F., Barre A., Ben Amor B., Bersoult A., Soriano L.C., Mirabella R., de Carvalho-Niebel F., Journet E.P., Gherardi M., Huguet T., et al. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 2006;142:265–279. doi: 10.1104/pp.106.084657. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Smit P., Limpens E., Geurts R., Fedorova E., Dolgikh E., Gough C., Bisseling T. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 2007;145:183–191. doi: 10.1104/pp.107.100495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Esseling J.J., Lhuissier F.G., Emons A.M. A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: Implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell. 2004;16:933–944. doi: 10.1105/tpc.019653. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Stracke S., Kistner C., Yoshida S., Mulder L., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J., Szczyglowski K., et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature. 2002;417:959–962. doi: 10.1038/nature00841. [PubMed] [CrossRef] [Google Scholar]

17. Endre G., Kereszt A., Kevei Z., Mihacea S., Kalo P., Kiss G.B. A receptor kinase gene regulating symbiotic nodule development. Nature. 2002;417:962–966. doi: 10.1038/nature00842. [PubMed] [CrossRef] [Google Scholar]

18. Ehrhardt D.W., Wais R., Long S.R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell. 1996;85:673–681. doi: 10.1016/S0092-8674(00)81234-9. [PubMed] [CrossRef] [Google Scholar]

19. Sieberer B.J., Chabaud M., Timmers A.C., Monin A., Fournier J., Barker D.G. A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol. 2009;151:1197–1206. doi: 10.1104/pp.109.142851. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Ane J.M., Kiss G.B., Riely B.K., Penmetsa R.V., Oldroyd G.E., Ayax C., Levy J., Debelle F., Baek J.M., Kalo P., et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science. 2004;303:1364–1367. doi: 10.1126/science.1092986. [PubMed] [CrossRef] [Google Scholar]

21. Peiter E., Sun J., Heckmann A.B., Venkateshwaran M., Riely B.K., Otegui M.S., Edwards A., Freshour G., Hahn M.G., Cook D.R., et al. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiol. 2007;145:192–203. doi: 10.1104/pp.107.097261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Charpentier M., Bredemeier R., Wanner G., Takeda N., Schleiff E., Parniske M. Lotus japonicus castor and pollux are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell. 2008;20:3467–3479. doi: 10.1105/tpc.108.063255. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Charpentier M., Sun J., Martins T.V., Radhakrishnan G.V., Findlay K., Soumpourou E., Thouin J., Véry A.-A., Sanders D., Morris R.J., et al. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science. 2016;352:1102–1105. doi: 10.1126/science.aae0109. [PubMed] [CrossRef] [Google Scholar]

24. Lévy J., Bres C., Geurts R., Chalhoub B., Kulikova O., Duc G., Journet E.-P., Ané J.-M., Lauber E., Bisseling T., et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science. 2004;303:1361–1364. doi: 10.1126/science.1093038. [PubMed] [CrossRef] [Google Scholar]

25. Singh S., Katzer K., Lambert J., Cerri M., Parniske M. Cyclops, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe. 2014;15:139–152. doi: 10.1016/j.chom.2014.01.011. [PubMed] [CrossRef] [Google Scholar]

26. Gans J., Wolinsky M., Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005;309:1387–1390. doi: 10.1126/science.1112665. [PubMed] [CrossRef] [Google Scholar]

27. Bulgarelli D., Schlaeppi K., Spaepen S., Ver Loren van Themaat E., Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. [PubMed] [CrossRef] [Google Scholar]

28. Müller D.B., Vogel C., Bai Y., Vorholt J.A. The plant microbiota: Systems-level insights and perspectives. Annu. Rev. Genet. 2016;50:211–234. doi: 10.1146/annurev-genet-120215-034952. [PubMed] [CrossRef] [Google Scholar]

29. Bulgarelli D., Rott M., Schlaeppi K., Ver Loren van Themaat E., Ahmadinejad N., Assenza F., Rauf P., Huettel B., Reinhardt R., Schmelzer E., et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95. doi: 10.1038/nature11336. [PubMed] [CrossRef] [Google Scholar]

30. Lundberg D.S., Lebeis S.L., Paredes S.H., Yourstone S., Gehring J., Malfatti S., Tremblay J., Engelbrektson A., Kunin V., Del Rio T.G., et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90. doi: 10.1038/nature11237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. De Meyer S.E., De Beuf K., Vekeman B., Willems A. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium) Soil Biol. Biochem. 2015;83:1–11. doi: 10.1016/j.soilbio.2015.01.002. [CrossRef] [Google Scholar]

32. Velázquez E., Martínez-Hidalgo P., Carro L., Alonso P., Peix A., Trujillo M., Martínez-Molina E. Nodular endophytes: An untapped diversity. In: González M.B.R., Gonzalez-López J., editors. Beneficial Plant-Microbial Interactions: Ecology and Applications. CRC Press; Boca Raton, FL, USA: 2013. pp. 214–236. [Google Scholar]

33. Rajendran G., Patel M.H., Joshi S.J. Isolation and characterization of nodule-associated Exiguobacterium sp. From the root nodules of Fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int. J. Microbiol. 2012;2012:8. doi: 10.1155/2012/693982. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Martínez-Hidalgo P., Hirsch A.M. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes. 2017;1:70–82. doi: 10.1094/PBIOMES-12-16-0019-RVW. [CrossRef] [Google Scholar]

35. Leite J., Fischer D., Rouws L.F.M., Fernandes-Júnior P.I., Hofmann A., Kublik S., Schloter M., Xavier G.R., Radl V. Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front. Plant Sci. 2017;7:2064. doi: 10.3389/fpls.2016.02064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Zgadzaj R., James E.K., Kelly S., Kawaharada Y., de Jonge N., Jensen D.B., Madsen L.H., Radutoiu S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet. 2015;11:e1005280. doi: 10.1371/journal.pgen.1005280. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Zgadzaj R., Garrido-Oter R., Jensen D.B., Koprivova A., Schulze-Lefert P., Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc. Natl. Acad. Sci. USA. 2016;113:E7996–E8005. doi: 10.1073/pnas.1616564113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Schumpp O., Deakin W.J. How inefficient rhizobia prolong their existence within nodules. Trends Plant Sci. 2010;15:189–195. doi: 10.1016/j.tplants.2010.01.001. [PubMed] [CrossRef] [Google Scholar]

39. Hacquard S., Spaepen S., Garrido-Oter R., Schulze-Lefert P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 2017;55:565–589. doi: 10.1146/annurev-phyto-080516-035623. [PubMed] [CrossRef] [Google Scholar]

40. Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the plant immune system from dissection to deployment. Science. 2013;341:746–751. doi: 10.1126/science.1236011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. [PubMed] [CrossRef] [Google Scholar]

42. Katagiri F., Tsuda K. Understanding the plant immune system. Mol. Plant Microbe Interact. 2010;23:1531–1536. doi: 10.1094/MPMI-04-10-0099. [PubMed] [CrossRef] [Google Scholar]

43. Maillet F., Poinsot V., Andre O., Puech-Pages V., Haouy A., Gueunier M., Cromer L., Giraudet D., Formey D., Niebel A., et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011;469:58–63. doi: 10.1038/nature09622. [PubMed] [CrossRef] [Google Scholar]

44. Genre A., Chabaud M., Balzergue C., Puech-Pagès V., Novero M., Rey T., Fournier J., Rochange S., Bécard G., Bonfante P., et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 2013;198:190–202. doi: 10.1111/nph.12146. [PubMed] [CrossRef] [Google Scholar]

45. Dénarié J., Cullimore J. Lipo-oligosaccharide nodulation factors: A new class of signaling molecules mediating recognition and morphogenesis. Cell. 1993;74:951–954. doi: 10.1016/0092-8674(93)90717-5. [PubMed] [CrossRef] [Google Scholar]

46. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Prome J.C., Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990;344:781–784. doi: 10.1038/344781a0. [PubMed] [CrossRef] [Google Scholar]

47. Kawaharada Y., Kelly S., Nielsen M.W., Hjuler C.T., Gysel K., Muszynski A., Carlson R.W., Thygesen M.B., Sandal N., Asmussen M.H., et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature. 2015;523:308–312. doi: 10.1038/nature14611. [PubMed] [CrossRef] [Google Scholar]

48. Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 2003;302:630–633. doi: 10.1126/science.1090074. [PubMed] [CrossRef] [Google Scholar]

49. Zipfel C., Oldroyd G. Plant signalling in symbiosis and immunity. Nature. 2017;543:328–336. doi: 10.1038/nature22009. [PubMed] [CrossRef] [Google Scholar]

50. Bozsoki Z., Cheng J., Feng F., Gysel K., Vinther M., Andersen K.R., Oldroyd G., Blaise M., Radutoiu S., Stougaard J. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc. Natl. Acad. Sci. USA. 2017;114:E8118–E8127. doi: 10.1073/pnas.1706795114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Libault M., Farmer A., Joshi T., Takahashi K., Langley R.J., Franklin L.D., He J., Xu D., May G., Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010;63:86–99. doi: 10.1111/j.1365-313X.2010.04222.x. [PubMed] [CrossRef] [Google Scholar]

52. Lohar D.P., Sharopova N., Endre G., Penuela S., Samac D., Town C., Silverstein K.A., VandenBosch K.A. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 2006;140:221–234. doi: 10.1104/pp.105.070326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Kouchi H., Shimomura K., Hata S., Hirota A., Wu G.J., Kumagai H., Tajima S., Suganuma N., Suzuki A., Aoki T., et al. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res. 2004;11:263–274. doi: 10.1093/dnares/11.4.263. [PubMed] [CrossRef] [Google Scholar]

54. Felix G., Duran J.D., Volko S., Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999;18:265–276. doi: 10.1046/j.1365-313X.1999.00265.x. [PubMed] [CrossRef] [Google Scholar]

55. Boller T., Felix G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379–406. doi: 10.1146/annurev.arplant.57.032905.105346. [PubMed] [CrossRef] [Google Scholar]

56. Lopez-Gomez M., Sandal N., Stougaard J., Boller T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 2012;63:393–401. doi: 10.1093/jxb/err291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Chen T., Duan L., Zhou B., Yu H., Zhu H., Cao Y., Zhang Z. Interplay of pathogen-induced defense responses and symbiotic establishment in Medicago truncatula. Front. Microbiol. 2017;8:973. doi: 10.3389/fmicb.2017.00973. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Deakin W.J., Broughton W.J. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Microbiol. 2009;7:312–320. doi: 10.1038/nrmicro2091. [PubMed] [CrossRef] [Google Scholar]

59. Miwa H., Okazaki S. How effectors promote beneficial interactions. Curr. Opin. Plant Biol. 2017;38:148–154. doi: 10.1016/j.pbi.2017.05.011. [PubMed] [CrossRef] [Google Scholar]

60. Dalla Via V., Zanetti M.E., Blanco F. How legumes recognize rhizobia. Plant Signal Behav. 2016;11:e1120396. [PMC free article] [PubMed] [Google Scholar]

61. Viprey V., Del Greco A., Golinowski W., Broughton W.J., Perret X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 1998;28:1381–1389. doi: 10.1046/j.1365-2958.1998.00920.x. [PubMed] [CrossRef] [Google Scholar]

62. Hubber A., Vergunst A.C., Sullivan J.T., Hooykaas P.J.J., Ronson C.W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A Vir/D4 type IV secretion system. Mol. Microbiol. 2004;54:561–574. doi: 10.1111/j.1365-2958.2004.04292.x. [PubMed] [CrossRef] [Google Scholar]

63. Bladergroen M.R., Badelt K., Spaink H.P. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol. Plant Microbe Interact. 2003;16:53–64. doi: 10.1094/MPMI.2003.16.1.53. [PubMed] [CrossRef] [Google Scholar]

64. Fauvart M., Michiels J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol. Lett. 2008;285:1–9. doi: 10.1111/j.1574-6968.2008.01254.x. [PubMed] [CrossRef] [Google Scholar]

65. Nelson M.S., Sadowsky M.J. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front. Plant Sci. 2015;6:491. doi: 10.3389/fpls.2015.00491. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Okazaki S., Kaneko T., Sato S., Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl. Acad. Sci. USA. 2013;110:17131–17136. doi: 10.1073/pnas.1302360110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Okazaki S., Zehner S., Hempel J., Lang K., Göttfert M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol. Lett. 2009;295:88–95. doi: 10.1111/j.1574-6968.2009.01593.x. [PubMed] [CrossRef] [Google Scholar]

68. Xin D.-W., Liao S., Xie Z.-P., Hann D.R., Steinle L., Boller T., Staehelin C. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. Strain NGR234. PLOS Pathog. 2012;8:e1002707. doi: 10.1371/journal.ppat.1002707. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Kambara K., Ardissone S., Kobayashi H., Saad M.M., Schumpp O., Broughton W.J., Deakin W.J. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol. Microbiol. 2009;71:92–106. doi: 10.1111/j.1365-2958.2008.06507.x. [PubMed] [CrossRef] [Google Scholar]

70. Ge Y.-Y., Xiang Q.-W., Wagner C., Zhang D., Xie Z.-P., Staehelin C. The type 3 effector NopL of Sinorhizobium sp. Strain NGR234 is a mitogen-activated protein kinase substrate. J. Exp. Bot. 2016;67:2483–2494. doi: 10.1093/jxb/erw065. [PubMed] [CrossRef] [Google Scholar]

71. Zhang L., Chen X.-J., Lu H.-B., Xie Z.-P., Staehelin C. Functional analysis of the type 3 effector nodulation outer protein l (NopL) from Rhizobium sp. NGR234: Symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J. Biol. Chem. 2011;286:32178–32187. doi: 10.1074/jbc.M111.265942. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Bartsev A.V., Boukli N.M., Deakin W.J., Staehelin C., Broughton W.J. Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett. 2003;554:271–274. doi: 10.1016/S0014-5793(03)01145-1. [PubMed] [CrossRef] [Google Scholar]

73. Bartsev A.V., Deakin W.J., Boukli N.M., McAlvin C.B., Stacey G., Malnoë P., Broughton W.J., Staehelin C. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 2004;134:871–879. doi: 10.1104/pp.103.031740. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Yang S., Tang F., Gao M., Krishnan H.B., Zhu H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci. USA. 2010;107:18735–18740. doi: 10.1073/pnas.1011957107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Sadowsky M.J., Cregan P.B. The soybean Rj4 allele restricts nodulation by Bradyrhizobium japonicum serogroup 123 strains. Appl. Environ. Microbiol. 1992;58:720–723. [PMC free article] [PubMed] [Google Scholar]

76. Tang F., Yang S., Liu J., Zhu H. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 2016;170:26–32. doi: 10.1104/pp.15.01661. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Faruque O.M., Miwa H., Yasuda M., Fujii Y., Kaneko T., Sato S., Okazaki S. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl. Environ. Microbiol. 2015;81:6710–6717. doi: 10.1128/AEM.01942-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Yasuda M., Miwa H., Masuda S., Takebayashi Y., Sakakibara H., Okazaki S. Effector-triggered immunity determines host genotype-specific incompatibility in legume–Rhizobium symbiosis. Plant Cell Physiol. 2016;57:1791–1800. doi: 10.1093/pcp/pcw104. [PubMed] [CrossRef] [Google Scholar]

79. Radutoiu S., Madsen L.H., Madsen E.B., Jurkiewicz A., Fukai E., Quistgaard E.M., Albrektsen A.S., James E.K., Thirup S., Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 2007;26:3923–3935. doi: 10.1038/sj.emboj.7601826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Downie J.A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 2010;34:150–170. doi: 10.1111/j.1574-6976.2009.00205.x. [PubMed] [CrossRef] [Google Scholar]

81. Gibson K.E., Kobayashi H., Walker G.C. Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet. 2008;42:413–441. doi: 10.1146/annurev.genet.42.110807.091427. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Breedveld M.W., Cremers H.C., Batley M., Posthumus M.A., Zevenhuizen L.P., Wijffelman C.A., Zehnder A.J. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J. Bacteriol. 1993;175:750–757. doi: 10.1128/jb.175.3.750-757.1993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Cheng H.-P., Walker G.C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 1998;180:5183–5191. [PMC free article] [PubMed] [Google Scholar]

84. Perotto S., Brewin N., Kannenberg E. Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol. Plant Microbe Interact. 1994;7:99–112. doi: 10.1094/MPMI-7-0099. [CrossRef] [Google Scholar]

85. García-de los Santos A., Brom S. Characterization of two plasmid-borne lpsβ loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol. Plant Microbe Interact. 1997;10:891–902. doi: 10.1094/MPMI.1997.10.7.891. [PubMed] [CrossRef] [Google Scholar]

86. Gao M., D’Haeze W., De Rycke R., Wolucka B., Holsters M. Knockout of an Azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Mol. Plant Microbe Interact. 2001;14:857–866. doi: 10.1094/MPMI.2001.14.7.857. [PubMed] [CrossRef] [Google Scholar]

87. Mitra S., Mukherjee A., Wiley-Kalil A., Das S., Owen H., Reddy P., Ané J., James E., Gyaneshwar P. A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRGB74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice. J. Exp. Bot. 2016;67:5869–5884. doi: 10.1093/jxb/erw354. [PubMed] [CrossRef] [Google Scholar]

88. Albus U., Baier R., Holst O., Pühler A., Niehaus K. Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol. 2001;151:597–606. doi: 10.1046/j.0028-646x.2001.00214.x. [CrossRef] [Google Scholar]

89. Scheidle H., Groß A., Niehaus K. The lipid a substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytol. 2005;165:559–566. doi: 10.1111/j.1469-8137.2004.01214.x. [PubMed] [CrossRef] [Google Scholar]

90. Liang Y., Cao Y., Tanaka K., Thibivilliers S., Wan J., Choi J., Kang C.H., Qiu J., Stacey G. Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science. 2013;341:1384–1387. doi: 10.1126/science.1242736. [PubMed] [CrossRef] [Google Scholar]

91. Liang Y., Tóth K., Cao Y., Tanaka K., Espinoza C., Stacey G. Lipochitooligosaccharide recognition: An ancient story. New Phytol. 2014;204:289–296. doi: 10.1111/nph.12898. [PubMed] [CrossRef] [Google Scholar]

92. Jones K.M., Sharopova N., Lohar D.P., Zhang J.Q., VandenBosch K.A., Walker G.C. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc. Natl. Acad. Sci. USA. 2008;105:704–709. doi: 10.1073/pnas.0709338105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Aslam S.N., Newman M.-A., Erbs G., Morrissey K.L., Chinchilla D., Boller T., Jensen T.T., De Castro C., Ierano T., Molinaro A., et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 2008;18:1078–1083. doi: 10.1016/j.cub.2008.06.061. [PubMed] [CrossRef] [Google Scholar]

94. Horváth B., Domonkos Á., Kereszt A., Szűcs A., Ábrahám E., Ayaydin F., Bóka K., Chen Y., Chen R., Murray J.D., et al. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc. Natl. Acad. Sci. USA. 2015;112:15232–15237. doi: 10.1073/pnas.1500777112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A.-E., Barloy-Hubler F., Galibert F., Kondorosi A., et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc. Natl. Acad. Sci. USA. 2006;103:5230–5235. doi: 10.1073/pnas.0600912103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Price P.A., Tanner H.R., Dillon B.A., Shabab M., Walker G.C., Griffitts J.S. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl. Acad. Sci. USA. 2015;112:15244–15249. doi: 10.1073/pnas.1417797112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Yang S., Wang Q., Fedorova E., Liu J., Qin Q., Zheng Q., Price P.A., Pan H., Wang D., Griffitts J.S., et al. Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc. Natl. Acad. Sci. USA. 2017;114:6848–6853. doi: 10.1073/pnas.1700460114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Wang Q., Yang S., Liu J., Terecskei K., Ábrahám E., Gombár A., Domonkos Á., Szűcs A., Körmöczi P., Wang T., et al. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc. Natl. Acad. Sci. USA. 2017;114:6854–6859. doi: 10.1073/pnas.1700715114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Schauser L., Roussis A., Stiller J., Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature. 1999;402:191–195. doi: 10.1038/46058. [PubMed] [CrossRef] [Google Scholar]

100. Marsh J.F., Rakocevic A., Mitra R.M., Brocard L., Sun J., Eschstruth A., Long S.R., Schultze M., Ratet P., Oldroyd G.E. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol. 2007;144:324–335. doi: 10.1104/pp.106.093021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Andriankaja A., Boisson-Dernier A., Frances L., Sauviac L., Jauneau A., Barker D.G., de Carvalho-Niebel F. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell. 2007;19:2866–2885. doi: 10.1105/tpc.107.052944. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Middleton P.H., Jakab J., Penmetsa R.V., Starker C.G., Doll J., Kalo P., Prabhu R., Marsh J.F., Mitra R.M., Kereszt A., et al. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell. 2007;19:1221–1234. doi: 10.1105/tpc.106.048264. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Cerri M.R., Frances L., Laloum T., Auriac M.-C., Niebel A., Oldroyd G.E.D., Barker D.G., Fournier J., de Carvalho-Niebel F. Medicago truncatula ERN transcription factors: Regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol. 2012;160:2155–2172. doi: 10.1104/pp.112.203190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Kalo P., Gleason C., Edwards A., Marsh J., Mitra R.M., Hirsch S., Jakab J., Sims S., Long S.R., Rogers J., et al. Nodulation signaling in legumes requires NSP2, a member of the gras family of transcriptional regulators. Science. 2005;308:1786–1789. doi: 10.1126/science.1110951. [PubMed] [CrossRef] [Google Scholar]

105. Smith L.G., Oppenheimer D.G. Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 2005;21:271–295. doi: 10.1146/annurev.cellbio.21.122303.114901. [PubMed] [CrossRef] [Google Scholar]

106. Combier J.P., Frugier F., de Billy F., Boualem A., El-Yahyaoui F., Moreau S., Vernie T., Ott T., Gamas P., Crespi M., et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 2006;20:3084–3088. doi: 10.1101/gad.402806. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Baudin M., Laloum T., Lepage A., Rípodas C., Ariel F., Frances L., Crespi M., Gamas P., Blanco F.A., Zanetti M.E., et al. A phylogenetically conserved group of Nuclear Factor-Y transcription factors interact to control nodulation in legumes. Plant Physiol. 2015;169:2761–2773. [PMC free article] [PubMed] [Google Scholar]

108. Soyano T., Kouchi H., Hirota A., Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet. 2013;9:e1003352. doi: 10.1371/journal.pgen.1003352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Zanetti M.E., Blanco F.A., Beker M.P., Battaglia M., Aguilar O.M. A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli symbiosis. Plant Cell. 2010;22:4142–4157. doi: 10.1105/tpc.110.079137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Benedito V.A., Torres-Jerez I., Murray J.D., Andriankaja A., Allen S., Kakar K., Wandrey M., Verdier J., Zuber H., Ott T., et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008;55:504–513. doi: 10.1111/j.1365-313X.2008.03519.x. [PubMed] [CrossRef] [Google Scholar]

111. El Yahyaoui F., Küster H., Ben Amor B., Hohnjec N., Pühler A., Becker A., Gouzy J., Vernié T., Gough C., Niebel A., et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol. 2004;136:3159–3176. doi: 10.1104/pp.104.043612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Maunoury N., Redondo-Nieto M., Bourcy M., Van de Velde W., Alunni B., Laporte P., Durand P., Agier N., Marisa L., Vaubert D., et al. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE. 2010;5:e9519. doi: 10.1371/journal.pone.0009519. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Moreau S., Verdenaud M., Ott T., Letort S., de Billy F., Niebel A., Gouzy J., de Carvalho-Niebel F., Gamas P. Transcription reprogramming during root nodule development in Medicago truncatula. PLoS ONE. 2011;6:e16463. doi: 10.1371/journal.pone.0016463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Larrainzar E., Riely B.K., Kim S.C., Carrasquilla-Garcia N., Yu H.-J., Hwang H.-J., Oh M., Kim G.B., Surendrarao A.K., Chasman D., et al. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol. 2015;169:233–265. doi: 10.1104/pp.15.00350. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Høgslund N., Radutoiu S., Krusell L., Voroshilova V., Hannah M.A., Goffard N., Sanchez D.H., Lippold F., Ott T., Sato S., et al. Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants. PLoS ONE. 2009;4:e6556. doi: 10.1371/journal.pone.0006556. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Vlasova A., Capella-Gutiérrez S., Rendón-Anaya M., Hernández-Oñate M., Minoche A.E., Erb I., Câmara F., Prieto-Barja P., Corvelo A., Sanseverino W., et al. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol. 2016;17:32. doi: 10.1186/s13059-016-0883-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Dalla Via V., Narduzzi C., Aguilar O.M., Zanetti M.E., Blanco F.A. Changes in the common bean (Phaseolus vulgaris) transcriptome in response to secreted and surface signal molecules of Rhizobium etli. Plant Physiol. 2015;169:1356–1370. doi: 10.1104/pp.15.00508. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Libault M., Farmer A., Brechenmacher L., Drnevich J., Langley R.J., Bilgin D.D., Radwan O., Neece D.J., Clough S.J., May G.D., et al. Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol. 2010;152:541–552. doi: 10.1104/pp.109.148379. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Severin A.J., Woody J.L., Bolon Y.-T., Joseph B., Diers B.W., Farmer A.D., Muehlbauer G.J., Nelson R.T., Grant D., Specht J.E., et al. RNA-seq atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010;10:160. doi: 10.1186/1471-2229-10-160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Afonso-Grunz F., Molina C., Hoffmeier K., Rycak L., Kudapa H., Varshney R.K., Drevon J.-J., Winter P., Kahl G. Genome-based analysis of the transcriptome from mature chickpea root nodules. Front. Plant Sci. 2014;5:325. doi: 10.3389/fpls.2014.00325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Garg R., Patel R.K., Jhanwar S., Priya P., Bhattacharjee A., Yadav G., Bhatia S., Chattopadhyay D., Tyagi A.K., Jain M. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol. 2011;156:1661–1678. doi: 10.1104/pp.111.178616. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morieri G., Mysore K.S., Wen J., Oldroyd G.E.D., et al. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell. 2014;26:4680–4701. doi: 10.1105/tpc.114.133496. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Jardinaud M.-F., Boivin S., Rodde N., Catrice O., Kisiala A., Lepage A., Moreau S., Roux B., Cottret L., Sallet E., et al. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by Nod factors in the Medicago truncatula root epidermis. Plant Physiol. 2016;171:2256–2276. doi: 10.1104/pp.16.00711. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Roux B., Rodde N., Jardinaud M.-F., Timmers T., Sauviac L., Cottret L., Carrère S., Sallet E., Courcelle E., Moreau S., et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 2014;77:817–837. doi: 10.1111/tpj.12442. [PubMed] [CrossRef] [Google Scholar]

125. Limpens E., Moling S., Hooiveld G., Pereira P.A., Bisseling T., Becker J.D., Küster H. Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS ONE. 2013;8:e64377. doi: 10.1371/journal.pone.0064377. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Zanetti M.E., Chang I.F., Gong F., Galbraith D.W., Bailey-Serres J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 2005;138:624–635. doi: 10.1104/pp.105.059477. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Reynoso M.A., Juntawong P., Lancia M., Blanco F.A., Bailey-Serres J., Zanetti M.E. Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-Seq) for quantitative assessment of plant translatomes. In: Alonso J.M., Stepanova A.N., editors. Plant Functional Genomics: Methods and Protocols. Springer; New York, NY, USA: 2015. pp. 185–207. [PubMed] [Google Scholar]

128. Reynoso M.A., Blanco F.A., Bailey-Serres J., Crespi M., Zanetti M.E. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J. 2013;73:289–301. doi: 10.1111/tpj.12033. [PubMed] [CrossRef] [Google Scholar]

129. Akçai E. Evolutionary models of mutualism. In: Bronstein J.L., editor. Mutualism. Oxford University Press; New York, NY, USA: 2015. pp. 57–76. [Google Scholar]

130. Aguilar O.M., Riva O., Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc. Natl. Acad. Sci. USA. 2004;101:13548–13553. doi: 10.1073/pnas.0405321101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Mazziotta L., Reynoso M.A., Aguilar O.M., Blanco F.A., Zanetti M.E. Transcriptional and functional variation of NF-YC1 in genetically diverse accessions of Phaseolus vulgaris during the symbiotic association with Rhizobium etli. Plant Biol. 2012 doi: 10.1111/j.1438-8677.2012.00683.x. [PubMed] [CrossRef] [Google Scholar]

132. Peltzer Meschini E.P., Blanco F.A., Zanetti M.E., Beker M.P., Kuster H., Puhler A., Aguilar O.M. Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis revealed by suppressive subtractive hybridization. Mol. Plant Microbe Interact. 2008;21:459–468. doi: 10.1094/MPMI-21-4-0459. [PubMed] [CrossRef] [Google Scholar]

133. Heath K.D., Tiffin P. Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution. 2009;63:652–662. doi: 10.1111/j.1558-5646.2008.00582.x. [PubMed] [CrossRef] [Google Scholar]

134. Oono R., Anderson C.G., Denison R.F. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc. Biol. Soc. 2011;278:2698–2703. doi: 10.1098/rspb.2010.2193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Gubry-Rangin C., Garcia M., Béna G. Partner choice in Medicago truncatula-Sinorhizobium symbiosis. Proc. Biol. Soc. 2010;277:1947–1951. doi: 10.1098/rspb.2009.2072. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Kiers E.T., Rousseau R.A., West S.A., Denison R.F. Host sanctions and the legume-rhizobium mutualism. Nature. 2003;425:78–81. doi: 10.1038/nature01931. [PubMed] [CrossRef] [Google Scholar]

137. Batstone R.T., Dutton E.M., Wang D., Yang M., Frederickson M.E. The evolution of symbiont preference traits in the model legume Medicago truncatula. New Phytol. 2017;213:1850–1861. doi: 10.1111/nph.14308. [PubMed] [CrossRef] [Google Scholar]

138. Banba M., Siddique A.-B.M., Kouchi H., Izui K., Hata S. Lotus japonicus forms early senescent root nodules with Rhizobium etli. Mol. Plant Microbe Interact. 2001;14:173–180. doi: 10.1094/MPMI.2001.14.2.173. [PubMed] [CrossRef] [Google Scholar]

139. Schumpp O., Crèvecoeur M., Broughton W.J., Deakin W.J. Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus-Rhizobium sp. NGR234 interaction. J. Exp. Bot. 2009;60:581–590. doi: 10.1093/jxb/ern302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Terpolilli J.J., O’Hara G.W., Tiwari R.P., Dilworth M.J., Howieson J.G. The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol. 2008;179:62–66. doi: 10.1111/j.1469-8137.2008.02464.x. [PubMed] [CrossRef] [Google Scholar]

141. Heath K.D., Burke P.V., Stinchcombe J.R. Coevolutionary genetic variation in the legume-rhizobium transcriptome. Mol. Ecol. 2012;21:4735–4747. doi: 10.1111/j.1365-294X.2012.05629.x. [PubMed] [CrossRef] [Google Scholar]

142. Burghardt L.T., Guhlin J., Chun C.L., Liu J., Sadowsky M.J., Stupar R.M., Young N.D., Tiffin P. Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. Mol. Ecol. 2017;26:6122–6135. doi: 10.1111/mec.14285. [PubMed] [CrossRef] [Google Scholar]

143. D’Antuono A.L., Ott T., Krusell L., Voroshilova V., Ugalde R.A., Udvardi M., Lepek V.C. Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development. Mo. Plant Microbe Interact. 2007;21:50–60. doi: 10.1094/MPMI-21-1-0050. [PubMed] [CrossRef] [Google Scholar]

144. Kiers E.T., Hutton M.G., Denison R.F. Human selection and the relaxation of legume defences against ineffective rhizobia. Proc. Biol. Soc. 2007;274:3119–3126. doi: 10.1098/rspb.2007.1187. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Sprent J.I., Ardley J., James E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 2017;215:40–56. doi: 10.1111/nph.14474. [PubMed] [CrossRef] [Google Scholar]

146. Andrews M., Andrews M.E. Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci. 2017;18:705. doi: 10.3390/ijms18040705. [PMC free article] [PubMed] [CrossRef] [Google Scholar]