Phương pháp tiếp tuyến trong phương pháp tính

Dạng 1: Viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right) \in \left( C \right)\).

Phương pháp:

- Bước 1: Tính \(y' = f'\left( x \right) \Rightarrow f'\left( {{x_0}} \right)\).

- Bước 2: Viết phương trình tiếp tuyến \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

- Bước 3: Kết luận.

Dạng 2: Viết phương trình tiếp tuyến của đồ thị hàm số đi qua một điểm.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) biết tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right)\).

Phương pháp:

- Bước 1: Tính \(y' = f'\left( x \right)\).

- Bước 2: Viết phương trình tiếp tuyến tại điểm có hoành độ \({x_0}\) của \(\left( C \right)\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

- Bước 3: Thay tọa độ \(\left( {{x_M};{y_M}} \right)\) vào phương trình trên, giải phương trình tìm \({x_0}\).

- Bước 4: Thay mỗi giá trị \({x_0}\) tìm được vào phương trình tiếp tuyến ta được phương trình cần tìm.

Dạng 3: Viết phương trình tiếp tuyến của đồ thị hàm số cho biết hệ số góc.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc \(k\).

Phương pháp:

- Bước 1: Tính \(y' = f'\left( x \right)\).

- Bước 2: Giải phương trình \(f'\left( x \right) = k\) tìm nghiệm \({x_1},{x_2},...\).

- Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại các điểm \(\left( {{x_1};f\left( {{x_1}} \right)} \right),\left( {{x_2};f\left( {{x_2}} \right)} \right),...\)

Dạng 4: Viết phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc nhỏ nhất, lớn nhất.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc nhỏ nhất, lớn nhất.

Phương pháp:

- Bước 1: Tính \(y' = f'\left( x \right)\).

- Bước 2: Tìm GTNN (hoặc GTLN) của \(f'\left( x \right)\) suy ra hệ số góc của tiếp tuyến và hoành độ tiếp điểm (là giá trị mà \(f'\left( x \right)\) đạt GTNN, GTLN).

- Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm vừa tìm được.

a) Tiếp tuyến tại các điểm cực trị của đồ thị \(\left( C \right)\) có phương song song hoặc trùng với trục hoành.

b) Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\left( {a \ne 0} \right)\).

+) Khi \(a > 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc nhỏ nhất.

+) Khi \(a < 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc lớn nhất.

Dạng 5: Viết phương trình tiếp tuyến của đồ thị hàm số biết mối quan hệ của nó với đường thẳng cho trước.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\).

Phương pháp:

- Bước 1: Tính \(y' = f'\left( x \right)\).

- Bước 2: Nêu điều kiện về mối quan hệ giữa tiếp tuyến có hệ số góc \(k = f'\left( x \right)\) với đường thẳng \(d\) có hệ số góc \(k'\).

+ Tiếp tuyến vuông góc \(d \Leftrightarrow k.k' =  - 1\).

+ Tiếp tuyến song song với \(d \Leftrightarrow k = k'\).

+ Góc tạo bởi tiếp tuyến của \(d\) bằng \(\alpha  \Leftrightarrow \tan \alpha  = \left| {\dfrac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right|\)

- Bước 3: Giải phương trình ở trên tìm nghiệm \({x_1},{x_2},...\) và tọa độ các tiếp điểm.

- Bước 4: Viết phương trình các tiếp tuyến tại các tiếp điểm vừa tìm được.

Dạng 6: Tìm điều kiện của tham số để đồ thị hàm số có tiếp tuyến thỏa mãn điều kiện nào đó.

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Tìm \(m\) để tiếp tuyến với \(\left( C \right)\) đi qua điểm \(M\left( {{x_M};{y_M}} \right)\) cho trước.

Phương pháp:

- Bước 1: Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \({x_0}\) thuộc \(\left( C \right)\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

- Bước 2: Nêu điều kiện để tiếp tuyến thỏa mãn điều kiện đề bài:

Tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right) \Leftrightarrow pt{\rm{ }}{y_M} = f'\left( {{x_0}} \right)\left( {{x_M} - {x_0}} \right) + f\left( {{x_0}} \right)\) có nghiệm.

- Bước 3: Tìm điều kiện của \(m\) dựa vào điều kiện ở trên và kết luận.

2. Sự tiếp xúc của các đồ thị hàm số

Cho \(\left( C \right):y = f\left( x \right)\) và \(\left( {C'} \right):y = g\left( x \right)\).

Dạng 1: Xét sự tiếp xúc của hai đồ thị hàm số.

Phương pháp:

- Bước 1: Tính \(f'\left( x \right),g'\left( x \right)\).

- Bước 2: Giải hệ phương trình \(\left\{ \begin{array}{l}f'\left( x \right) = g'\left( x \right)\\f\left( x \right) = g\left( x \right)\end{array} \right.\).

- Bước 3: Kết luận:

+ Nếu hệ có nghiệm thì \(\left( C \right)\) và \(\left( {C'} \right)\) tiếp xúc.

+ Nếu hệ vô nghiệm thì \(\left( C \right)\) và \(\left( {C'} \right)\) không tiếp xúc.

Dạng 2: Tìm điều kiện của tham số để hai đồ thị hàm số tiếp xúc với nhau.

Phương pháp:

- Bước 1: Tính \(f'\left( x \right),g'\left( x \right)\).

- Bước 2: Nêu điều kiện để hai đồ thị hàm số tiếp xúc:

\(\left( C \right)\) và \(\left( {C'} \right)\) tiếp xúc nếu và chỉ nếu hệ phương trình \(\left\{ \begin{array}{l}f'\left( x \right) = g'\left( x \right)\\f\left( x \right) = g\left( x \right)\end{array} \right.\) có nghiệm.

- Bước 3: Tìm \(m\) từ điều kiện trên và kết luận.

Ý tưởng của thuật toán như sau: Ở bước lặp thứ k ta thay hàm f(x) bởi tiếp tuyến với đồ thị tại điểm xk. Nghiệm xấp xỉ tiếp theo là giao điểm của tiếp tuyến với trục hoành.

Phương pháp tiếp tuyến trong phương pháp tính

f là hàm khả vi và dễ tính giá trị đạo hàm thì phương pháp tiếp tuyến có tốc độ hội tụ nhanh.

Phương pháp tiếp tuyến trong phương pháp tính

Giả sử f(x) là hàm khả vi liên tục 2 lần trên đoạn [a,b] và thoả mãn: f(a).f(b)<0 và f’, f’’ không đổi dấu trên đoạn [a,b].

Định nghĩa: Điểm x0 gọi là điểm Fourier của f nếu:

f(x0) f’’(x0) >0

Dễ thấy với các điều kiện trên nếu một trong hai điểm a, b là điểm Fourier, thì điểm kia không là Fourier. (Vì f(a) và f(b) trái dấu, còn f’’(x) không đổi dấu)

Định lý (điều kiện hội tụ theo Furiê_điều kiện đủ)

Giả sử [a,b] là khoảng nghiệm của phương trình f(x)=0. Đạo hàm f’(x), f’’(x) liên tục, không đổi dấu, không tiêu diệt trên [a,b]. Khi đó ta chọn xấp xỉ nghiệm ban đầu x0 thuộc[a,b] sao cho f(x0)*f’’(x0) > 0 thì quá trình lặp sẽ hội tụ đến nghiệm.

Phương pháp tiếp tuyến hay còn gọi là phương pháp Fourier có tốc độ hội tụ cao.

Xấp xỉ ban đầu x0 được chọn là một điểm Fourier thuộc [a,b] kể cả a và b.

Phương trình tiếp tuyến với đồ thị y=f(x) tại xk là:

y = f’(xk) (x-xk) +f(xk);

Nghiệm xấp xỉ ở bước k+1 sẽ là nghiệm của phương trình:

f’(xk) (x-xk) +f(xk) =0

hay ta có công thức lặp:

Phương pháp tiếp tuyến trong phương pháp tính

Ta có thể chứng minh dãy trên đơn điệu và hội tụ đến nghiệm phương trình

Ước lượng sai số:

Giả sử x* là nghiệm của (4.1), đặt m = min{|f’(x)| | x∈[a,b]}. Ta có ước lượng sau:

Phương pháp tiếp tuyến trong phương pháp tính

Thật vậy, ta có

f(xn) = f(xn) – f(x*) = f’(c) (xn – x*)

nên

Phương pháp tiếp tuyến trong phương pháp tính

Vì các đạo hàm f’(x) và f’’(x) không đổi dấu trên [a,b] nên

m = min { |f’(a)|, |f’(b)| } >0

Dạng giả mã của thuật toán:

Procedure Newton

{

m= min (|f’(a)|, |f’(b)| );

x=x 0 =điểm Fourier

while (|f(x)/m|>ε) x = x – f(x) / f’(x);

// x là nghiệm gần đúng

}

Sai số ở bước n được tính theo công thức là:

Phương pháp tiếp tuyến trong phương pháp tính

Ví dụ 1: Để tính gần đúng 153 size 12{ nroot { size 8{3} } {"15"} } {} ta giải phương trình x3 -15 =0 trên đoạn [2,3]. Dễ kiểm tra thấy f(2).f(3) <0; f’(x) =3x2 >0; f’’(x) =6x>0 trên đoạn [2,3] và x0=3 là điểm Fourier và m = min{12, 27} = 12

Công thức có dạng:

Phương pháp tiếp tuyến trong phương pháp tính

Ta có x1 = 2,5556; x2 = 2,4693

Sai số |x2- x*| < |f(x2)|/m = 0,005

Vídụ2: Giải phương trình: x3 + x - 5 = 0 bằng phương pháp tiếp tuyến

Giải: - Tách nghiệm:

f(x) = x3 + x - 5

f’(x) = 3x2 + 1 > 0 mọi x

Phương trình trên có 1 nghiệm duy nhất f(1)* f(2) = (-3)*5 < 0

Vậy phương trình có 1 nghiệm duy nhất x thuộc (1, 2)

- Chính xác hoá nghiệm: f’’(x) = 6x > 0 mọi x thuộc (1, 2) f’(x) > 0 mọi x

Thoả mãn điều kiện hội tụ Furiê, áp dụng phương pháp tiếp tuyến

Chọn với x0 = 2 ( vì f(2). f’’(2) > 0)

Ví dụ 3: Xét phương trình f(x) = x3 - 3x + 1 = 0 trong khoảng cách ly nghiệm [0,1/2]. Ta có

Phương pháp tiếp tuyến trong phương pháp tính
Chọn x0 = 0 thỏa điều kiện Fourier.

Kết quả tính toán theo công thức lặp Newton cho ta bảng sau:

Phương pháp tiếp tuyến trong phương pháp tính