Difference between eukaryotic and prokaryotic gene expression

To understand how gene expression is regulated, we must first understand how a gene becomes a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different fashions.

Because prokaryotic organisms lack a cell nucleus, the processes of transcription and translation occur almost simultaneously. When the protein is no longer needed, transcription stops. As a result, the primary method to control what type and how much protein is expressed in a prokaryotic cell is through the regulation of DNA transcription into RNA. All the subsequent steps happen automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is almost entirely at the transcriptional level.

Eukaryotic cells, in contrast, have intracellular organelles and are much more complex. Recall that in eukaryotic cells, the DNA is contained inside the cell’s nucleus and it is transcribed into mRNA there. The newly synthesized mRNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the mRNA into protein. The processes of transcription and translation are physically separated by the nuclear membrane; transcription occurs only within the nucleus, and translation only occurs outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process (Figure 2):

  • Epigenetic level: regulates how tightly the DNA is wound around histone proteins to package it into chromosomes
  • Transcriptional level: regulates how much transcription takes place
  • Post-transcriptional level: regulates aspects of RNA processing (such as splicing) and transport out of the nucleus
  • Translational level: regulates how much of the RNA is translated into protein
  • Post-translational level: regulates how long the protein lasts after it has been made and whether the protein is processed into an active form
Figure 2: Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, as well as during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins.

The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in Table 1.

Table 1: Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms

Prokaryotic organismsEukaryotic organismsLack nucleusContain nucleusRNA transcription and protein translation occur almost simultaneouslyRNA transcription occurs prior to protein translation, and it takes place in the nucleus. RNA translation to protein occurs in the cytoplasm.

RNA post-processing includes addition of a 5′ cap, poly-A tail, and excision of introns and splicing of exons.

Gene expression is regulated primarily at the transcriptional levelGene expression is regulated at many levels (epigenetic, transcriptional, post-transcriptional, translational, and posttranslational)

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

OpenStax, Concepts of Biology. OpenStax CNX. May 18, 2016 //cnx.org/contents/b3c1e1d2-839c-42b0-a314-e119a8aafbdd@9.10

To understand how gene expression is regulated, we must first understand how a gene codes for a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different manners.

Prokaryotic organisms are single-celled organisms that lack a cell nucleus, and their DNA therefore floats freely in the cell cytoplasm. To synthesize a protein, the processes of transcription and translation occur almost simultaneously. When the resulting protein is no longer needed, transcription stops. As a result, the primary method to control what type of protein and how much of each protein is expressed in a prokaryotic cell is the regulation of DNA transcription. All of the subsequent steps occur automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is mostly at the transcriptional level.

Eukaryotic cells, in contrast, have intracellular organelles that add to their complexity. In eukaryotic cells, the DNA is contained inside the cell’s nucleus and there it is transcribed into RNA. The newly synthesized RNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the RNA into protein. The processes of transcription and translation are physically separated by the nuclear membrane; transcription occurs only within the nucleus, and translation occurs only outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process (Figure 1). Regulation may occur when the DNA is uncoiled and loosened from nucleosomes to bind transcription factors (epigenetic level), when the RNA is transcribed (transcriptional level), when the RNA is processed and exported to the cytoplasm after it is transcribed (post-transcriptional level), when the RNA is translated into protein (translational level), or after the protein has been made (post-translational level).

Figure 1. Prokaryotic transcription and translation occur simultaneously in the cytoplasm, and regulation occurs at the transcriptional level. Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, and during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins.

The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in Table 1. The regulation of gene expression is discussed in detail in subsequent modules.

Table 1. Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic OrganismsProkaryotic organismsEukaryotic organismsLack nucleusContain nucleusDNA is found in the cytoplasmDNA is confined to the nuclear compartmentRNA transcription and protein formation occur almost simultaneouslyRNA transcription occurs prior to protein formation, and it takes place in the nucleus. Translation of RNA to protein occurs in the cytoplasm.Gene expression is regulated primarily at the transcriptional levelGene expression is regulated at many levels (epigenetic, transcriptional, nuclear shuttling, post-transcriptional, translational, and post-translational)

Evolution of Gene Regulation

Prokaryotic cells can only regulate gene expression by controlling the amount of transcription. As eukaryotic cells evolved, the complexity of the control of gene expression increased. For example, with the evolution of eukaryotic cells came compartmentalization of important cellular components and cellular processes. A nuclear region that contains the DNA was formed. Transcription and translation were physically separated into two different cellular compartments. It therefore became possible to control gene expression by regulating transcription in the nucleus, and also by controlling the RNA levels and protein translation present outside the nucleus.

Some cellular processes arose from the need of the organism to defend itself. Cellular processes such as gene silencing developed to protect the cell from viral or parasitic infections. If the cell could quickly shut off gene expression for a short period of time, it would be able to survive an infection when other organisms could not. Therefore, the organism evolved a new process that helped it survive, and it was able to pass this new development to offspring.

Practice Questions

Control of gene expression in eukaryotic cells occurs at which level(s)?

  1. only the transcriptional level
  2. epigenetic and transcriptional levels
  3. epigenetic, transcriptional, and translational levels
  4. epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

Show Answer

Answer d. Control of gene expression in eukaryotic cells occurs at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels.

How is gene expression in prokaryotes and eukaryotes similar?

How are Prokaryotic and Eukaryotic Gene Expression similar? Both require the participation of regulatory proteins, some of which (transcription factors) attach directly to DNA sequences. eukaryotes: activator proteins act on enhancer DNA sequences; repressor proteins act on silencer DNA sequences.

How is eukaryotic gene expression different from prokaryotic gene expression quizlet?

Eukaryotic gene regulation differs from prokaryotic gene regulation in that: A: transcription and translation occur at the same location in eukaryotes, but at different locations in prokaryotes.

What are three common differences between prokaryotic genes and eukaryotic genes?

The structure and chemical composition of the DNA in both the eukaryotic and prokaryotic cells are different. The prokaryotic cells have no nucleus, no organelles and a very small amount of DNA. On the other hand, the eukaryotic cells have nuclei and cell organelles, and the amount of DNA present is large.

Which of the following statements differentiates eukaryotic and prokaryotic gene expression?

25. Which statement is correct regarding the distinction between prokaryotic and eukaryotic gene expression? Prokaryotes regulate gene expression at the level of transcription whereas eukaryotes regulate at multiple levels including epigenetic, transcriptional and translational.

Chủ đề