Đề bài - bài 3.30 trang 174 sbt giải tích 12

\( \Rightarrow \int\limits_0^1 {t\sin tdt} = \left. { - t\cos t} \right|_0^1 + \int\limits_0^1 {\cos tdt} \) \( = - 1\cos 1 + \left. {\sin t} \right|_0^1 = - \cos 1 + \sin 1\)

Đề bài

\(\int\limits_0^1 {\sin \sqrt x dx} \) bằng

A. \(2\left( {\sin 1 - \cos 1} \right)\)

B. \(\sin 1 - \cos 1\)

C. \(2\left( {\cos 1 - \sin 1} \right)\)

D. \(2\left( {\sin 1 + \cos 1} \right)\)

Phương pháp giải - Xem chi tiết

Đặt \(t = \sqrt x \), kết hợp với phương pháp từng phần để tính tích phân.

Lời giải chi tiết

Đặt \(t = \sqrt x \Rightarrow {t^2} = x\) \( \Rightarrow 2tdt = dx\)

Khi đó \(\int\limits_0^1 {\sin \sqrt x dx} \)\( = \int\limits_0^1 {\sin t.2tdt} = 2\int\limits_0^1 {t\sin tdt} \)

Đặt \(\left\{ \begin{array}{l}u = t\\dv = \sin tdt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dt\\v = - \cos t\end{array} \right.\)

\( \Rightarrow \int\limits_0^1 {t\sin tdt} = \left. { - t\cos t} \right|_0^1 + \int\limits_0^1 {\cos tdt} \) \( = - 1\cos 1 + \left. {\sin t} \right|_0^1 = - \cos 1 + \sin 1\)

Vậy \(\int\limits_0^1 {\sin \sqrt x dx} = 2\left( {\sin 1 - \cos 1} \right)\)

Chọn A.

Video liên quan

Chủ đề